Создан трёхмерный метаматериал для инфракрасных лучей
Учёные из Принстонского университета (Princeton University) создали удивительный метаматериал, который обладает отрицательной рефракцией, то есть преломляет световые лучи в противоположном направлении, нежели естественные материалы. Пусть только в ограниченном диапазоне волн.
О метаматериалах и их возможном применении мы уже рассказывали вот тут. Вкратце – это искусственные материалы, которые получают свои необычные свойства от самой структуры, а не от веществ, их составляющих. Такое название им дали, чтобы отделить метаматериалы от просто композитных материалов, подразумевая, что они обладают свойствами, не встречающимися у природных веществ.
Метаматериал, созданный группой исследователей под руководством профессора электронной инженерии Клэр Гмахл (Claire Gmachl), также обладает не естественным свойством, а отрицательным индексом преломления в ближней инфракрасной области спектра.
Подобный материал создан не впервые. Мы уже видели двухмерный метаматериал, ставший "плащом невидимости" в микроволновом диапазоне. А весной этого года учёные из университета Вюрцбурга (Universität Würzburg) даже отыскали материал с отрицательной рефракцией, существующий в природе (La2/3Ca1/3MnO3).
Помимо того что новый метаматериал из Принстона обладает отрицательной рефракцией, он ещё и проявляет её по всем трём измерениям. Более того, он создан полностью из полупроводников (чередующиеся слои In0,53Ga0,47As и Al0,48In0,52As).
Эти вещества способны переключаться между проводящим и непроводящим состояниями, именно поэтому их чаще других используют для создания микрочипов и оптоэлектроники. А значит, новый материал будет легче "вживить" в уже существующие устройства, полагают его создатели.
"Чтобы материал можно было использовать в самых разных приборах, необходимо проявление им метасвойств "со всех сторон", — говорит Гмахл, — желательно также, чтобы он был многофункциональным".
Одно из возможных применений нового метаматериала — создание из него плоских линз, которые приведут к микроскопу, позволяющему разглядеть даже такие маленькие объекты, как нити ДНК.
Единственное ограничение работы материала — длины волн, но в будущем учёные планируют распространить технологию и на другие частоты.
Подробности исследования вы можете узнать из пресс-релиза университета и статьи авторов, опубликованной в журнале Nature Materials.